2,386 research outputs found

    Silver-Zinc Battery Separator Material Development

    Get PDF
    Ethylene/acrylic acid separators for silver zinc battery application

    Momentum distributions in time-dependent density functional theory: Product phase approximation for non-sequential double ionization in strong laser fields

    Full text link
    We investigate the possibility to deduce momentum space properties from time-dependent density functional calculations. Electron and ion momentum distributions after double ionization of a model Helium atom in a strong few-cycle laser pulse are studied. We show that, in this case, the choice of suitable functionals for the observables is considerably more important than the choice of the correlation potential in the time-dependent Kohn-Sham equations. By comparison with the solution of the time-dependent Schroedinger equation, the insufficiency of functionals neglecting electron correlation is demonstrated. We construct a functional of the Kohn-Sham orbitals, which in principle yields the exact momentum distributions of the electrons and the ion. The product-phase approximation is introduced, which reduces the problem of approximating this functional significantly.Comment: 8 pages, 5 figures, RevTeX

    Precision spectroscopy of the 3s-3p fine structure doublet in Mg+

    Get PDF
    We apply a recently demonstrated method for precision spectroscopy on strong transitions in trapped ions to measure both fine structure components of the 3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference data for transition frequencies, isotope shifts and fine structure splittings that are in particular useful for comparison with quasar absorption spectra, which test possible space-time variations of the fine structure constant. The measurement accuracy improves previous literature values, when existing, by more than two orders of magnitude

    Silver-Zinc Battery Separator Material Development

    Get PDF
    Ethylene/methyl acrylate copolymer synthesis for silver-zinc battery separator

    A new L-dwarf member of the moderately metal-poor triple system HD 221356

    Full text link
    We report on the discovery of a fourth component in the HD 221356 star system, previously known to be formed by an F8V, slightly metal-poor primary ([Fe/H]=-0.26), and a distant M8V+L3V pair. In our ongoing common proper motion search based on VISTA Hemisphere Survey (VHS) and 2MASS catalogues, we have detected a faint (J=13.76+/-0.04 mag) co-moving companion of the F8 star located at angular separation of 12.13+/-0.18 arcsec (position angle of 221.8+/-1.7), corresponding to a projected distance of ~312 AU at 26 pc. Near-infrared spectroscopy of the new companion, covering the 1.5-2.4 micron wavelength range with a resolving power of R~600, indicates an L1+/-1 spectral type. Using evolutionary models the mass of the new companion is estimated at ~0.08 solar masses, which places the object close to the stellar-substellar borderline. This multiple system provides an interesting example of objects with masses slightly above and below the hydrogen burning mass limit. The low mass companions of HD 221356 have slightly bluer colours than field dwarfs with similar spectral type, which is likely a consequence of the sub-solar metallicity of the system.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    A millennium of arable land use – the long-term impact of tillage and water erosion on landscape-scale carbon dynamics

    Get PDF
    In the last decades, soils and their agricultural management have received great scientific and political attention due to their potential to act as a sink of atmospheric carbon dioxide (CO2). Agricultural management has strong potential to accelerate soil redistribution, and, therefore, it is questioned if soil redistribution processes affect this potential CO2 sink function. Most studies analysing the effect of soil redistribution upon soil organic carbon (SOC) dynamics focus on water erosion and analyse only relatively small catchments and relatively short time spans of several years to decades. The aim of this study is to widen this perspective by including tillage erosion as another important driver of soil redistribution and by performing a model-based analysis in a 200 km2 sized arable region of northeastern Germany for the period since the conversion from forest to arable land (approx. 1000 years ago). The spatially explicit soil redistribution and carbon (C) turnover model SPEROS-C was applied to simulate lateral soil and SOC redistribution and SOC turnover. The model parameterisation uncertainty was estimated by simulating different realisations of the development of agricultural management over the past millennium. The results indicate that, in young moraine areas, which are relatively dry but have been intensively used for agriculture for centuries, SOC patterns and dynamics are substantially affected by tillage-induced soil redistribution processes. To understand the landscape-scale effect of these redistribution processes on SOC dynamics, it is essential to account for long-term changes following land conversion as typical soil-erosion-induced processes, e.g. dynamic replacement, only take place after former forest soils reach a new equilibrium following conversion. Overall, it was estimated that, after 1000 years of arable land use, SOC redistribution by tillage and water results in a current-day landscape-scale C sink of up to 0.66 ‰ yr−1 of the current SOC stocks.</p

    Locomotor adaptability in persons with unilateral transtibial amputation

    Get PDF
    Background Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb
    • …
    corecore